select order_id, order_datetime,
customer_id, store_id
from co.orders
where order_datetime >= date'2019-04-01'
ORDER_ID | ORDER_DATETIME | CUSTOMER_ID | STORE_ID | 1916 | 01-APR-19 05.27.32.922332 AM | 87 | 23 | 1917 | 01-APR-19 11.16.45.297958 AM | 225 | 22 | 1918 | 01-APR-19 01.37.14.376157 PM | 254 | 22 | 1919 | 01-APR-19 02.03.52.732709 PM | 145 | 23 | 1920 | 01-APR-19 03.19.17.592317 PM | 145 | 23 | 1921 | 02-APR-19 01.48.41.157805 AM | 261 | 23 | 1922 | 02-APR-19 03.52.49.213390 PM | 339 | 20 | 1923 | 03-APR-19 10.47.49.417719 AM | 354 | 1 | 1924 | 03-APR-19 01.40.01.840676 PM | 232 | 23 | 1925 | 03-APR-19 02.02.33.418296 PM | 87 | 23 | 1926 | 03-APR-19 07.05.04.600442 PM | 366 | 18 | 1927 | 04-APR-19 12.53.58.792754 AM | 196 | 22 | 1928 | 04-APR-19 03.24.06.034344 PM | 367 | 19 | 1929 | 04-APR-19 08.14.44.084942 PM | 165 | 20 | 1930 | 04-APR-19 08.24.44.505645 PM | 338 | 19 | 1931 | 05-APR-19 12.26.49.495590 AM | 136 | 20 | 1932 | 05-APR-19 08.43.51.766135 AM | 319 | 23 | 1933 | 05-APR-19 08.57.16.206628 PM | 254 | 22 | 1934 | 06-APR-19 12.19.35.005649 AM | 370 | 22 | 1935 | 06-APR-19 04.30.16.153051 AM | 370 | 22 | 1936 | 06-APR-19 03.32.41.785093 PM | 312 | 22 | 1937 | 07-APR-19 06.54.49.039864 AM | 312 | 22 | 1938 | 07-APR-19 06.31.50.146426 PM | 370 | 22 | 1939 | 08-APR-19 06.54.19.862383 AM | 174 | 23 | 1940 | 08-APR-19 08.57.49.237653 AM | 203 | 23 | 1941 | 08-APR-19 11.16.55.199255 PM | 290 | 23 | 1942 | 10-APR-19 03.36.17.661842 AM | 203 | 23 | 1943 | 10-APR-19 08.14.01.961369 AM | 377 | 23 | 1944 | 10-APR-19 10.14.27.406048 AM | 367 | 19 | 1945 | 10-APR-19 03.49.31.059138 PM | 341 | 22 | 1946 | 10-APR-19 06.22.55.181577 PM | 348 | 23 | 1947 | 11-APR-19 03.49.08.760887 AM | 377 | 23 | 1948 | 11-APR-19 03.49.45.728115 AM | 319 | 23 | 1949 | 11-APR-19 07.14.31.588169 PM | 348 | 23 | 1950 | 12-APR-19 09.41.06.642641 PM | 348 | 23 |
---|
Formattting the date
select order_datetime, to_char ( order_datetime, 'dd Mon yyyy' )
from co.orders
where order_datetime >= date'2019-04-01'
ORDER_DATETIME | TO_CHAR(ORDER_DATETIME,'DDMONYYYY') | 01-APR-19 05.27.32.922332 AM | 01 Apr 2019 | 01-APR-19 11.16.45.297958 AM | 01 Apr 2019 | 01-APR-19 01.37.14.376157 PM | 01 Apr 2019 | 01-APR-19 02.03.52.732709 PM | 01 Apr 2019 | 01-APR-19 03.19.17.592317 PM | 01 Apr 2019 | 02-APR-19 01.48.41.157805 AM | 02 Apr 2019 | 02-APR-19 03.52.49.213390 PM | 02 Apr 2019 | 03-APR-19 10.47.49.417719 AM | 03 Apr 2019 | 03-APR-19 01.40.01.840676 PM | 03 Apr 2019 | 03-APR-19 02.02.33.418296 PM | 03 Apr 2019 | 03-APR-19 07.05.04.600442 PM | 03 Apr 2019 | 04-APR-19 12.53.58.792754 AM | 04 Apr 2019 | 04-APR-19 03.24.06.034344 PM | 04 Apr 2019 | 04-APR-19 08.14.44.084942 PM | 04 Apr 2019 | 04-APR-19 08.24.44.505645 PM | 04 Apr 2019 | 05-APR-19 12.26.49.495590 AM | 05 Apr 2019 | 05-APR-19 08.43.51.766135 AM | 05 Apr 2019 | 05-APR-19 08.57.16.206628 PM | 05 Apr 2019 | 06-APR-19 12.19.35.005649 AM | 06 Apr 2019 | 06-APR-19 04.30.16.153051 AM | 06 Apr 2019 | 06-APR-19 03.32.41.785093 PM | 06 Apr 2019 | 07-APR-19 06.54.49.039864 AM | 07 Apr 2019 | 07-APR-19 06.31.50.146426 PM | 07 Apr 2019 | 08-APR-19 06.54.19.862383 AM | 08 Apr 2019 | 08-APR-19 08.57.49.237653 AM | 08 Apr 2019 | 08-APR-19 11.16.55.199255 PM | 08 Apr 2019 | 10-APR-19 03.36.17.661842 AM | 10 Apr 2019 | 10-APR-19 08.14.01.961369 AM | 10 Apr 2019 | 10-APR-19 10.14.27.406048 AM | 10 Apr 2019 | 10-APR-19 03.49.31.059138 PM | 10 Apr 2019 | 10-APR-19 06.22.55.181577 PM | 10 Apr 2019 | 11-APR-19 03.49.08.760887 AM | 11 Apr 2019 | 11-APR-19 03.49.45.728115 AM | 11 Apr 2019 | 11-APR-19 07.14.31.588169 PM | 11 Apr 2019 | 12-APR-19 09.41.06.642641 PM | 12 Apr 2019 |
---|
Group the rows
select to_char ( order_datetime, 'dd Mon yyyy' ),
count (*)
from co.orders
where order_datetime >= date'2019-04-01'
group by to_char ( order_datetime, 'dd Mon yyyy' )
TO_CHAR(ORDER_DATETIME,'DDMONYYYY') | COUNT(*) | 12 Apr 2019 | 1 | 03 Apr 2019 | 4 | 04 Apr 2019 | 4 | 10 Apr 2019 | 5 | 11 Apr 2019 | 3 | 05 Apr 2019 | 3 | 02 Apr 2019 | 2 | 07 Apr 2019 | 2 | 01 Apr 2019 | 5 | 06 Apr 2019 | 3 | 08 Apr 2019 | 3 |
---|
Set the default format mask
alter session set nls_timestamp_format = 'Mon YYYY'
Statement processed.
Using to_char with no format mask
select to_char ( order_datetime ),
count (*)
from co.orders
where order_datetime >= date'2019-04-01'
group by to_char ( order_datetime )
TO_CHAR(ORDER_DATETIME) | COUNT(*) | Apr 2019 | 35 |
---|